The Effectiveness Of Anchovy Concentration (Stolephorus insularis) as Antimicrobial to Streptococcus mutans (In Vitro)

Almira Fa’Izah,* Istien Wardani,** Diana Soesilo***
* Undergraduate Fakultas Kedokteran Gigi Universitas Hang Tuah
** Pediatric Dentistry, Faculty of Dentistry, Hang Tuah University
*** Konservation, Faculty of Dentistry, Hang Tuah University

ABSTRACT

Background: Dental and oral diseases which are often found in children is dental caries. Streptococcus mutans is the main cause of caries. Caries can be prevented by using a topical application of fluoride. The Anchovy (Stolephorus insularis) contains protein, vitamins (A, B, C), and minerals (Fe, Ca, K, F). Calcium fluoride (CaF₂) within the anchovy can inhibit the occurrence of dental caries. Purpose: The aim of this study was to determine the antimicrobial ability of anchovy extract (Stolephorus insularis) to Streptococcus mutans.

Materials and Methods: This study was a laboratory experimental research with post test only control group design. Diffusion method were applied with 2 controls: negative control used DMSO 1%, positive control used NaF solution, and 3 concentrations of anchovy extract (Stolephorus insularis) 3%, 6%, and 12%, each group were composed of 6 samples. Antimicrobial was assessed by measuring the diameter of the clear zone around the discs contained the anchovy extract (Stolephorus insularis). Data were analyzed by Kruskal-Wallis test followed by Mann-Whitney test.

Result: The results from this study showed clear zone around the discs of the anchovy extract (Stolephorus insularis). The more concentration of the extract showed the more antimicrobial zone diameter. The average zone of antimicrobial at the concentration of 3% were 7.11 mm, 6% 9.5 mm, 12% 10.78 mm, for the negative control DMSO 1% 6 mm and the positive control NaF solution 8.16 mm. The largest diameter of the clear zone was at concentration of 12% (P < 0.05). Conclusion: The anchovy extract (Stolephorus insularis) had an antimicrobial effect to the growth of Streptococcus mutans.

Keywords: Anchovy extract (Stolephorus insularis), Streptococcus mutans, caries prevention, antimicrobial effect.

Correspondence: Istien Wardani, Department of Pediatric Dentistry, Faculty of Dentistry, Hang Tuah University, Arif Rahman Hakim 150, Surabaya, Phone 031-5945864, 5912191, Email: istienwardani@yahoo.com

BACKGROUND

Dental and oral diseases which are often found in societies is dental caries. This disease not only affects adults, but also often suffered by children.¹ Based on the basic health research (Riskesdas) in 2007 the prevalence of active caries in
Indonesia amounted to 46.5%. Meanwhile, according to the data from Health Ministry of Republic Indonesia (Kemenkes) in 2009, as many as 89% of Indonesian children under the age of 12 years suffer from dental caries.

The main problem in the oral health of children is dental caries. Dental caries is an infectious disease that is closely related to the consumption of foods and beverages that contain cariogenic ingredients. In children the necessary precautions through plaque control, dietary habits (consumption of foods and drinks containing sugar), oral hygiene, fluoride usage, sealant, and mouthwash.

Dental caries is an infectious disease that came from the demineralization in hard tissue of the crown and root surface of the tooth that can be prevented. Caries is progressive because of the accumulation of activity that can be detected by tissue damage from the tooth surface (pit, fissure, and the interproximal zone) to extend into the pulp tissue. The main factor that caused caries is the host (teeth), the microorganisms (bacteria), the substrate, and the time.

Demineralization of dental caries caused by susceptible (host), the bacteria that caused caries, and the substrate for bacteria. Caries bacteria include Streptococcus, Lactobacilli, and Actinomyces. The microorganisms produce organic acids especially lactic acid by fermenting carbohydrates on the surface of the teeth resulting in decreased salivary pH (below 5.5) which resulted demineralised tooth surface and then forming small holes called dental caries. Streptococcus mutans is very meaningful recognized as the cause of dental caries.

Emphasizing prevention of caries in the oral environment returns imbalance as a protective mechanism of remineralization. One of caries prevention is by using fluorine as a topical application, mouthwash, and toothpaste.

The use of fluorine recommended by doctor and dentist so that the teeth become harder and more resistant to caries. The purpose of the use of fluorine is an attempt to protect the teeth from caries. Fluor works by inhibiting the metabolism of plaque bacteria that can ferment carbohydrates through changes hydroxypapatite (Ca_{10}(PO_4)_6(OH)_2) the enamel becomes fluorapatite (Ca_{10}(PO_4)_6F_2). Fluorapatite formation can decrease solubility in acidic enamel, speed up the remineralization process, and inhibit the action of bacterial enzymes (antimicrobial activity). Fluor residing in biofilms will inhibit bacteria work in synthesizing enzyme enolase so that bacteria can not produce acid.

The mechanism of caries inhibition by fluoride can be achieved at lower concentrations (< 100 μg/ml). If the fluoride is used too much, can lead to accumulation of fluoride in the matrix, forming a “mottled enamel”. The recommended fluoride adequacy rate was 1.5–4 mg/day.

One of the natural ingredients that contain high concentrations of fluoride is anchovy (Stolephorus insularis) as many as 15,7-38,3 ppm mainly in the form of CaF_2 compound. Besides containing fluorine, Stolephorus insularis also contains energy, protein, fat, carbohydrates, calcium, iron,
phosphorus, vitamin A, vitamin B, and vitamin C.11

CaF\textsubscript{2} compound can give most fluoride results because of its ability gradually removing fluoride and also acts as a fluoride backup. However, these compounds are not widely used in dentistry because it is difficult to obtain in dosage forms and expensive.8 So that the fluorine content of \textit{Stolephorus insularis} studied by students of Dentistry University of Indonesia in dosage forms the substrate as a topical application in vivo.

\textit{Stolephorus insularis} very easily obtained in Indonesia and most people eat.10 This is because \textit{Stolephorus insularis} is one of the most abundant resources in Indonesia especially nearshore area.12 Sedati coastal subdistrict, Sidoarjo regency is an area of inshore waters, so \textit{Stolephorus insularis} is one of the local resources.

Antimicrobials are compounds of biological or chemical that is capable of disrupting the activity of microbial growth.13 Fluor in bacteria works bacteriostatic, inhibits cell proliferation by inhibiting the synthesis of nucleic acid which is a very vital part for cell development. The mechanism works by binding to the enzyme-RNA polymerase (the subunits) that inhibit the synthesis of RNA DNA.14

Based on the reasons above, the researcher wanted to know the effective concentration of \textit{Stolephorus insularis} extract as antimicrobials against the growth of \textit{Streptococcus mutans} bacteria.

\section*{MATERIALS AND METHODS}

This research is kind of true experimental, with the study design post test only control group design. The sampling technique using simple random sampling, is to divide the subjects into five groups, each group was given a different treatment. On the negative control group K(-) using a DMSO 1% solution, on the positive control group K(+) using NaF solution, on the treatment group P1 were given \textit{Stolephrous insularis} 3% extract, P2 were given \textit{Stolephrous insularis} 6% extract, P3 were given \textit{Stolephrous insularis} 12% extract.

The tools used are mask, rubber gloves, test tube rack, test tubes, petridish, micropipet, bacti zeper (sterilizer osse), osse, autoclave, incubator, anaerobic jar, gasket, anaerobic indicator, blender, scales, porcelain bowl, spatula glass, oven, waterbath, rotary evaporator, caliper with precision 0.05 mm, circular disc Ø 6 mm, cotton swab, syringe, densicheck (bacterial turbidity measuring device), cryotube, cryotube rack, tweezer, biological safety cabinet (place to conduct experiments on bacteria). Materials used are \textit{Streptococcus mutans} bacteria in the MH blood agar, \textit{Stolephorus insularis} extracts with various concentrations (3%, 6%, 12%), NaF solution, ethanol 96%, DMSO 1% solution, NaCl sterile liquid, TYC agar.

The process of making \textit{Stolephorus insularis} extracts performed at the Laboratory of Phytochemistry Faculty of Pharmacy, University of Widya Mandala Surabaya. Purchase \textit{Streptococcus mutans} bacteria and experimental research conducted at the Laboratory.
of Microbiology of the Center for Health Surabaya.

The initial step of this study begins by creating a culture of *Streptococcus mutans* in NaCl liquid sterile which is comparable to 0.5 McFarland standart. Then prepare for sterile TYC media into five research groups, each sample consisting of two control groups and three treatment groups. *Streptococcus mutans* bacteria taken from NaCl liquid that has been synchronized with the turbidity of McFarland 0.5 solution and then rubbed on the entire surface of the plate in TYC agar by using a sterile swab. After that, the disc is dipped in each solution was treated for 10 seconds. Then the disc affixed to the TYC agar which have inhaled the *Streptococcus mutans* bacteria in accordance with the zone that has been provided. Incubated for 2x24 hours at 37°C in anaerobic jar in the incubator. After that, measured the diameter of the antimicrobial zone is formed in the form of clear zone around the disc three times using callipers (mm).

RESEARCH RESULT

Data obtained from the research results were tabulates and analyzed descriptively that aims to obtain an illustration of the distribution and summarizing data to clarify the presentation of the results, then test hypotheses using analytic statistical significant level of 95% (p<0.05) using SPSS version 20.

Table 1. Results of average and standart deviation of the antimicrobial potency in each treatment group

<table>
<thead>
<tr>
<th>Groups</th>
<th>Average ± Deviation Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>6 ± 0,00</td>
</tr>
<tr>
<td>K2</td>
<td>8,16 ± 0,93</td>
</tr>
<tr>
<td>P1</td>
<td>7,11 ± 0,74</td>
</tr>
<tr>
<td>P2</td>
<td>9,50 ±0,50</td>
</tr>
<tr>
<td>P3</td>
<td>10,78 ± 1,24</td>
</tr>
</tbody>
</table>

![Diagram of average results and the deviation standart of antimicrobial potency in each treatment groups](Picture 1)

Before performing hypothesis testing research results, then normality test first, because the normality test is one of the requirements parametric test. Normality test used is Shapiro-Wilk test, because the number of research subjects are less than 50 subjects. This test aims to determine whether the data obtained normal distribution or not with a significance level of 0.05 (p=0.05). If the data were normally distributed (p > 0.05) can proceed with parametric test, and if the data are not normally distributed (p < 0.05), then followed by a non parametric test.

The test results for normality using the Shapiro-Wilk test in table 2 shows all groups, those are group K2, P1, P2, and P3 normal distributed (p > 0.05).

Homogeneity test is also one of the prior conditions to the parametric test. The homogeneity test using Levene test. Data can be said to satisfy
the homogenous variance when p>0,05. If p<0,05 then the data does not have a homogenous variances thus qualified to perform parametric tests are not met.

Significance Test homogenity of variance showed score 0,000 (p < 0,05). It can be concluded that there is a difference of variance between groups of data are compared.

From the results of homogeneity test data, It can be concluded that the data have variances those are not homogenous. Thus, the parametric test requirements are not met.

Therefore the terms of parametric test are not met, the data are normal distributed and the data are not homogenous, then tested the non-parametric Kruskal-Wallis. Kruskal-Wallis test was used to determine the potency antimicrobial differences in Streptococcus mutans each treatment groups.

Based on the Kruskal-Wallis test results in table 4 of significance value of 0,000 (p < 0.05), then there is a difference in the antimicrobial potency of each groups.

Mann-Whitney test is the continuous non-parametric test from Kruskal-Wallis test which is useful to know that the group has significant difference potency antimicrobial by comparing between the two groups with a significance level of p<0,05.

Table 5 The results of Mann-Whitney test

<table>
<thead>
<tr>
<th>Groups</th>
<th>K1</th>
<th>K2</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>0,000</td>
<td>*</td>
<td>0,000</td>
<td>*</td>
<td>0,000</td>
</tr>
<tr>
<td>K2</td>
<td>6,000</td>
<td>3,000</td>
<td>*</td>
<td>*</td>
<td>0,000</td>
</tr>
<tr>
<td>P1</td>
<td>0,000</td>
<td>*</td>
<td>0,000</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td>6,500</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* There are significant differences

The results of Mann-Whitney test in table 5 showed there are significant difference of antimicrobial potency (p < 0,05) in group K1 with the entire treatment group, group K2 with group P3, and group P1 with group P2 and group P3. While the K2 group with P1 and P2 group showed no significant difference potency antimicrobial (p > 0,05). So also in the P2 group with P3 group showed no significant difference potency antimicrobial (p > 0,05).

DISCUSSION

This study used Stolephorus insularis extract with concentration of 3%, 6%, and 12%. Selection is based on the concentration in vivo studies using substrate Stolephorus insularis with 5% concentration which can be used as a topical application of fluoride.8 MIC fluoride against Streptococcus mutans (0,75%)15 with the highest fluoride content of 38.3 ppm Stolephorus insularis,10 so the researcher tried concentration of 3% as the initial concentration. Then researcher increased the concentration be doubled to 6% and 12%.

Making Stolephorus insularis extract using ethanol at 96% concentration because this solvent is universal (can dissolve polar and nonpolar compound) so expected by using ethanol 96%, active substance required may be fully extracted.17 Then Stolephorus insularis powder which already dissolved in 96% ethanol, evaporated by using a rotary evaporator until It becomes thick. Rotary evaporator is used as a solvent vaporizer because It can vaporize until below its boiling point with the aid of a pressure drop so that the chemical
compound contained in the solvent is not damaged or decomposed.16

The method used in this research is the diffusion method because the method can be used to test aerobic and facultative anaerobic bacteria.18 _Streptococcus mutans_ bacteria is facultative anaerobic bacteria.19

The used of _Streptococcus mutans_ bacteria due to these bacteria are the most dominant agent of human dental caries.20 Caries can be triggered by consumption of foods and beverages that contain cariogenic ingredients2 which is often favored by children. _Streptococcus mutans_ incubation using anaerobic jar and gaskit because it can create an anaerobic atmosphere perfectly,18 allowed to stand at a temperature of 37\textdegree{} for 48 hours.20

TYC media used as a medium to determine their inhibition in this study. TYC media contains sucrose which is as high as 50 gr/L, so that _Streptococcus mutans_ can ferment to multiply.22

The negative control used was DMSO 1\% because it doesn’t have antibacterial properties that will affect inhibition of bacteria and the extracts tested are natural materials.23 In addition, the solution serves as a solvent DMSO is rapidly absorbed into the epithelial extract without damaging the cells and is often used in medicine and health.24 On the positive control using NaF solution because this solution is the topical application material most often used to prevent caries, that is inhibit the growth and development the oral flora that play a role in the caries process.25 The use of fluoride as a topical application has been done a long time and has been shown to inhibit acid formation and growth of microorganisms.26

The results of this study showed that _Stolephorus insularis_ extract had antimicrobial power against the _Streptococcus mutans_ bacteria in all treatment groups with a concentration of 3\%, 6\%, and 12\%. At a concentration 3\% and 6\% antimicrobial power of _Stolephorus insularis_ extract not much different than antimicrobial power of NaF solution as a positive control. At a concentration of 12\%, the antimicrobial power of _Stolephorus insularis_ extract is greater than NaF solution. It’s because _Stolephorus insularis_ contains antimicrobial substances such as fluoride. Fluoride can inhibit the growth and development of microorganisms,25 inhibits many _Streptococcus_ oral bacterial enzyme system,19 thus inhibiting the activity of cariogenic bacteria in the metabolism of carbohydrates to form acids and polysaccharides adhesive.26

Based on the results obtained Kruskal-Wallis test, \(p = 0.000\) (\(p<0.05\)) which showed a significant difference in all groups, then followed by Mann-Whitney test to see the significance of the two data groups. Based on the research, it seemed that the greater concentration of _Stolephorus insularis_ extract also has a greater diameter of antimicrobial zone. It’s because the higher concentration of _Stolephorus insularis_ extract, the concentration of active ingredient contained therein are also getting bigger, so the antimicrobial zone is also greater. The averages of antimicrobial at a concentration 3\% (7.11 mm), 6\% (9.5 mm), 12\% (10.78 mm), negative control DMSO 1\% (6 mm), and positive control NaF (8.16 mm).
This study was a qualitative difference that shows the power of antimicrobial Stolephorus insularis extract against the growth of Streptococcus mutans bacteria at a concentration of 3%, 6%, dan 12%, and an initial study. The results showed that the highest concentration of the antimicrobial power which is 12% greater than antimicrobial power of NaF as a positive control. Henceforth, quantitative research needs to be done to determine the decrease in the number of bacterial colonies.

CONCLUSION

Based on the results of the study, the anchovy extract (Stolephorus insularis) has effective antimicrobial power against the Streptococcus mutans bacteria at a concentration of 12%.

BIBLIOGRAPHY